5.4 AD524S Instrumentation Amplifier

5.4.1 Scope

The purpose of this analysis is to model the Analog Devices AD524S Instrumentation Amplifier.

Analysis:	Amplifier modeling		
Last Rev Date:	1/18/2002		
Publication Number:	AD524_e.pdf		
Revision:	1999 - Rev E		
SPICE File	AD524S.CIR		

5.4.2 Functional Description

The AD524S is an instrumentation amplifier with programmable gain. No external components are required for the pin-programmable gains of 1, 10, 100, and 1000. Other gains can be set by adding a single external resistor. A differential input is provided. The output amplifier feedback loops are connected externally, allowing for an additional offset voltage input and remote output sensing for increased accuracy.

5.4.3 Assumptions and Comments

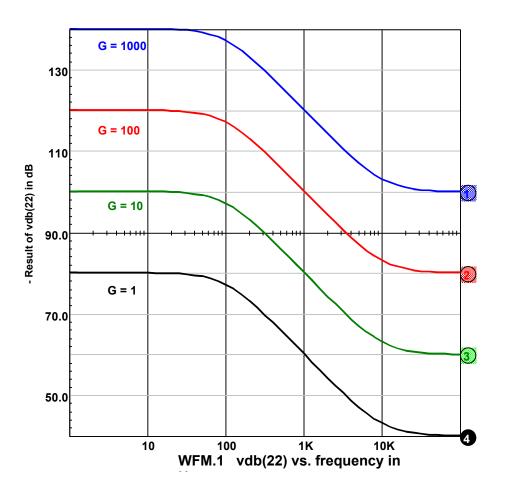
The device parameters that are modeled are listed in table 5.4.1.

- 1. Temperature dependence is modeled for gain, input and output offset voltage, input Bias and Offset Current.
- Temperature coefficient of input bias and offset currents cannot all be equal to the specified value of 100pA/C simultaneously, so I bias of one input is set to 100pA/C, I offset is set to 50pa/C and I bias of the second output is set to 50pA/C. This can be adjusted as appropriate in the worst case analysis.
- 3. A typical value for input offset current is not specified by the manufacturer, but is chosen to be proportional to input bias current in the same proportion as the max values.
- 4. Output voltage swing vs. supply voltage is modeled to agree with fig. 2 of the manufacturer's data sheet.
- 5. Input voltage range vs. supply voltage is modeled to agree with fig. 1 of the manufacturer's data sheet. Neither differential nor common mode is specifically modeled, but, rather, both inputs are independently limited.
- 6. Common mode rejection vs. frequency is modeled to approximately agree with fig. 10 of the manufacturer's data sheet. Note that it is specified as RTI.
- 7. Frequency response is modeled to agree with fig. 9 of the manufacturer's data sheet. Bandwidth is most accurate at G=1 and G=1000, but is only approximate at G=10 and 100.
- 8. Voltage noise spectral density (RTI) vs. gain is modeled to agree with fig. 15 of the manufacturer's data sheet.

AEi Systems, LLC

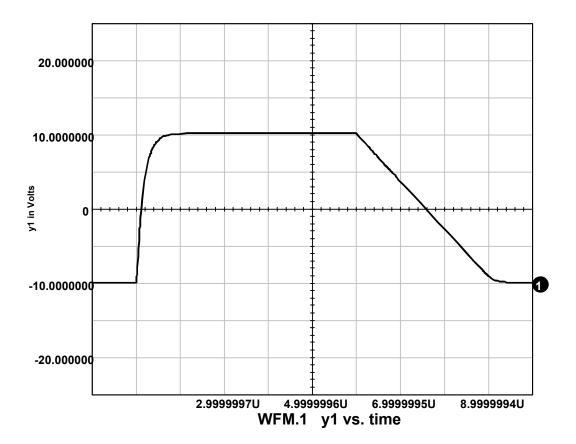
AD534S

- 9. Power dissipation is modeled by the correct simulation of quiescent supply current. Output load current is correctly steered to either the positive or negative power supply as applicable.
- 10. Typical values for gain error are not specified, thus they are set to zero for this model, but will be modeled in accordance with the maximum values in the worst case analysis.
- 11. Typical values for input and output offset voltage are not specified, thus arbitrary values, well less than the maximums are used for this model.

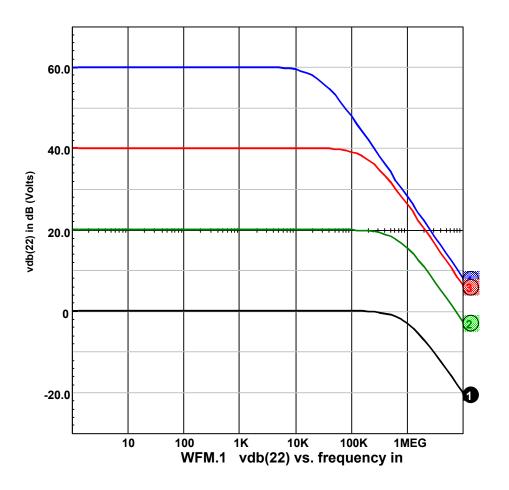

The following features and parameters are <u>NOT</u> modeled:

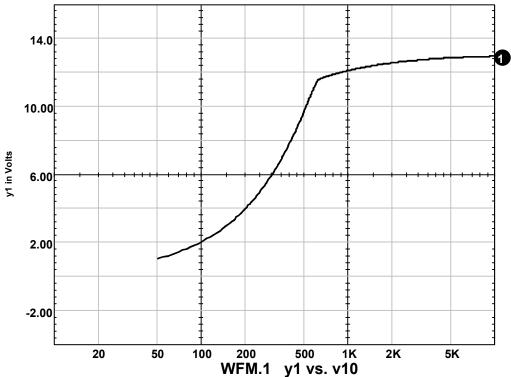
- 12. Power supply rejection.
- 13. Slew rate and settling time (but the model's performance is shown for reference).


5.4.5 SPICE Simulations and Analyses

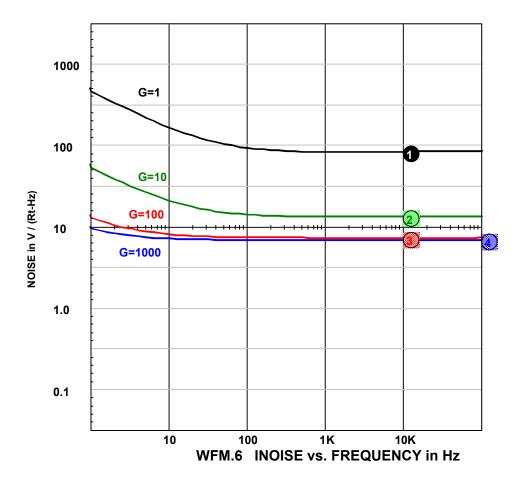

The model was simulated and the results were compared to the manufacturer's data sheet. The Spice simulation results are shown below:

5.4.5.1 Common Mode Rejection


SPICE Waveform of common mode rejection



SPICE Waveform of slew rate


SPICE Waveforms of frequency response

5.4.5.4 Output voltage swing

SPICE Waveform of output voltage swing vs. load resistance

SPICE Waveforms of voltage noise spectral density (RTI)

5.4.5.6 DC Characteristics

The simulation results for these parameters are summarized in table 5.4.1.

5.4.5.7 Worst Case and End-of-Life Characteristics

Data for Worst Case and End-of-Life modeling is included in the attached file, AD524SWC.XLS.

5.4.7 Conclusions and Recommendations

The Spice simulation results are summarized in table 5.4.1 and are within the manufacturer's electrical specifications.

Notes for Table 5.4.1:

- Typical values for gain error are not specified, thus they are set to zero for this model, but will be modeled in accordance with the maximum values in the worst case analysis.
- 2- Typical values for input and output offset voltage are not specified, thus arbitrary values, well less than the maximums are used for this model.
- 3- Slew rate and settling time are not modeled. For reference, the model's performance is shown.

Table 5.4.1 AD534T SPICE Model - Summary of Simulation Results

Unless otherwise specified, TA = +25C, +/-VS = 15V, RL = 2K

Parameter	Typ Spec	SPICE UNITS		
GAIN	.) p o poo			
Gain Error (1), $G = 1$	0.05 max	0 %		
G = 10	0.25 max	0 %		
G = 100	0.5 max	0 %		
G = 1000	2.0 max	0 %		
Nonlinearity, G = 1, 10, 100, 1000	0.01 max	0.01 %		
Gain vs. Temperature, G = 1	5 max	5 ppm/C		
G = 10	10 max	10 ppm/C		
G = 100	25 max	25 ppm/C		
G = 1000	50 max	50 ppm/C		
VOLTAGE OFFSET				
Input Offset Voltage (2)	100 max	15 uV		
vs. Temperature	2.0 max	2.0 uV/C		
Output Offset Voltage (2)	3.0 max	1.0 mV		
vs. Temperature	50 max	50 uV/C		
INPUT CURRENT				
Input Bias Current	10	10 nA		
vs. Temperature, IN+	100	100 pA/C		
IN-	100	50 pA/C		
Input Offset Current	35 max	7 nA		
vs. Temperature	100	50 pA/C		
INPUT	10 5	40 5 14		
Input Voltage Range	12.5	12.5 V		
vs. supply	Per fig. 1	-		
CMRR	-	Per fig. 10 dB		
G = 1	80	80 dB		
G = 10	100	100 dB		
G = 100	120	120 dB		
G = 1000	130	140 dB		

Copyright © 2002 – AEi Systems, LLC All Rights Reserved Proprietary and Confidential

Table 5.4.1 AD524S - Summary of Simulation Results (cont.)

Parameter	Тур Ѕрес	SPICE UNITS		
OUTPUT RATING				
Output Voltage Swing, RL = 2kOhms	12.5	12.5 V		
vs. supply	Per fig. 2	Per fig. 2 V		
vs. load	Per fig. 3	Per fig. 3 V		
DYNAMIC RESPONSE				
Small Signal BW, -3dB, G = 1	1	1.00 MHz		
G = 10	400	733 kHz		
G = 100	150	207 kHz		
G = 1000	25	25.3 kHz		
Slew Rate (3) (Vout = 20Vp-p), t rise	5.0	41 V/us		
t fall	5.0	6.5 V/us		
Settling Time (3) (to 0.01%, Vout = 20 Vp-p)				
G = 1	15	61 us		
G = 10	15	8.3 us		
G = 100	15	4.9 us		
G = 1000	75	57 us		
NOISE				
Voltage noise spectral density, @ 1 kHz				
RTI	7	6.8 nV/sqrt(Hz)		
SENSE INPUT				
RIN	20	20 kOhms		
REFERENCE INPUT				
R IN	20	20 kOhms		
POWER SUPPLY				
Quiescent current	3.5	3.5 mA		