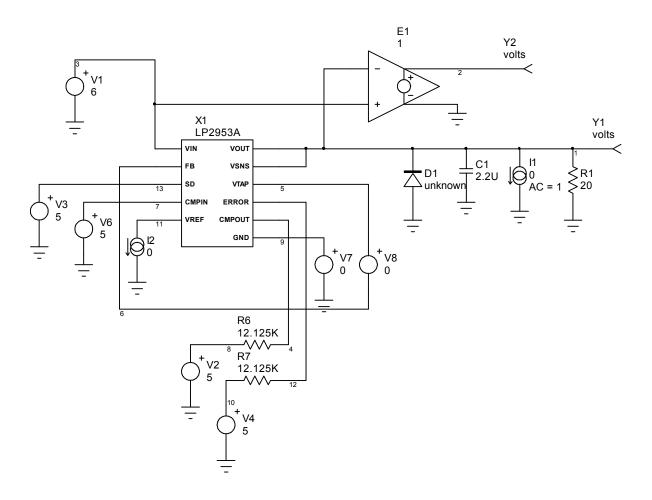
1.0 LP2953A LOW DROPOUT REGULATOR

1.1 Scope

The purpose of this analysis is to model the National Semiconductor LP2953A low dropout voltage regulator.

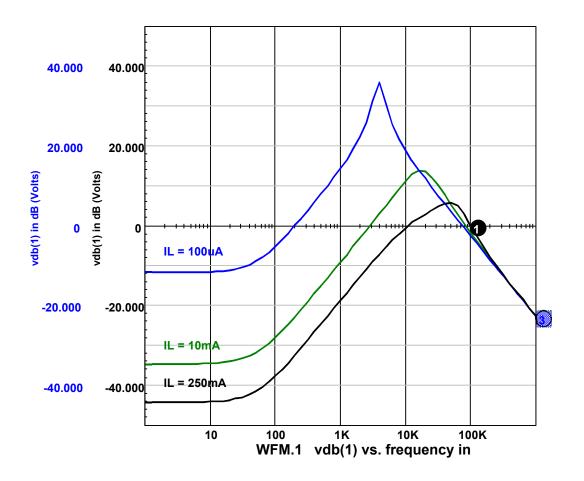
Analysis:	Regulator modeling		
Performed by:			
Last Rev Date:	5/10/2002		
Publication Number:	Nat'l LP2953A Data sheet		
Revision:	May 1999		
SPICE File	LP2953A.CIR		

1.2 Functional Description

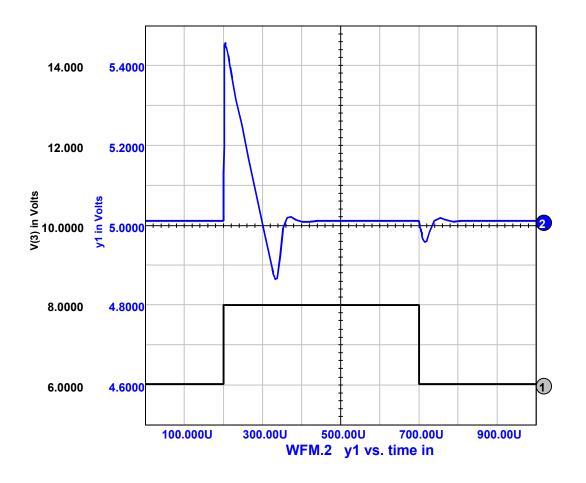

The LP2953A is a low power low dropout voltage regulator with current limiting and undervoltage lockout. A shutdown input disables the regulator and discharges the output through an internal crowbar. If the output drops out of regulation, an externally available error flag goes low. An auxiliary comparator with one input tied to V ref is also provided.

1.3 Assumptions and Comments

- 1. Frequency response and phase margin are modeled to agree with the customer's test data. The manufacturer's data sheet does not provide this information.
- 2. For higher frequencies, the model's frequency response does not agree with the customer's test data. The customer's data is believed to be in error. In particular, above a few hundred kHz, the gain of the regulator is actually lower than that of the test circuit's 10 ohm resistor / load capacitor, so at higher frequencies, the customer's bode plot is a plot of the test circuit, not of the regulator. This is the cause of the 180 degree phase reversal at ~400kHz. The test circuit spice model also exhibits this behavior but at a higher frequency. Note that the regulator's actual performance is more stable than the customer's data would suggest.
- 3. Gain margin is not modeled.
- 4. In order to agree with the customer's data for frequency response, output impedance could only be approximately modeled.
- 5. Current limiting is modeled, but the foldback characteristics of mfr's fig. 44 are not modeled.
- 6. Hysteresis is not modeled for any of the comparator inputs.
- 7. The inversion of the error output during shutdown ($Vin \le 1.3V$) is not modeled.
- 8. Load transient response is approximately modeled.
- 9. Quiescent and ground current are approximately modeled to agree with mfr's fig. 27 and 30.

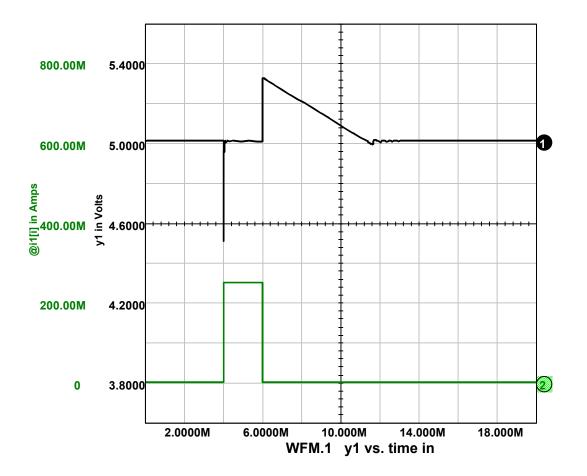

1.4 SPICE Simulations and Analyses

The model was simulated and the results were compared to data supplied by the customer as well as the manufacturer's data sheet. The Spice simulation results are shown below.

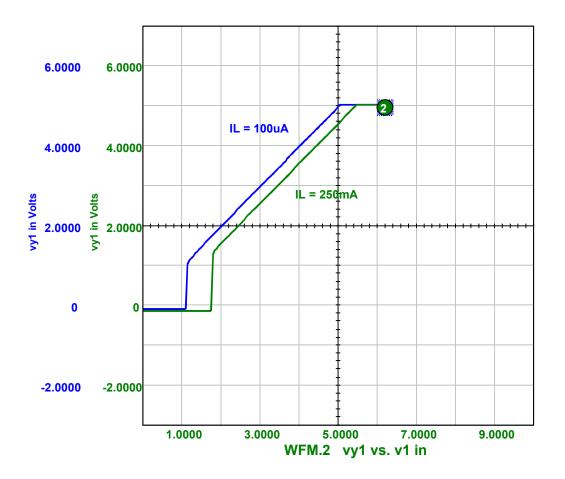

SPICE test circuit for manufacturer's test conditions

Output Impedance

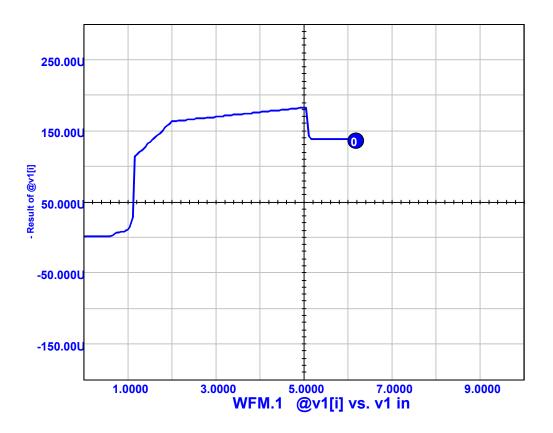
SPICE Waveforms of output impedance


Line transient response

SPICE Waveforms of line transient response

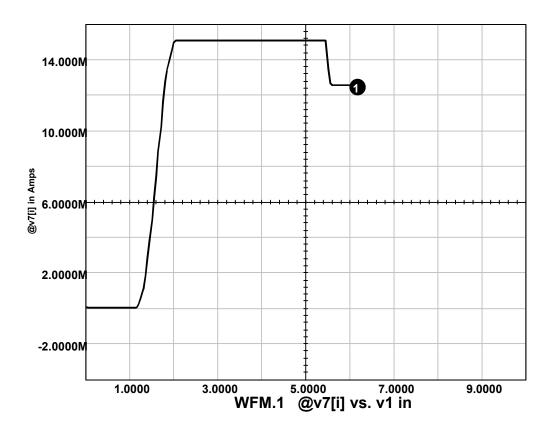

IL = 10mA

Load transient response


SPICE Waveforms of load transient response

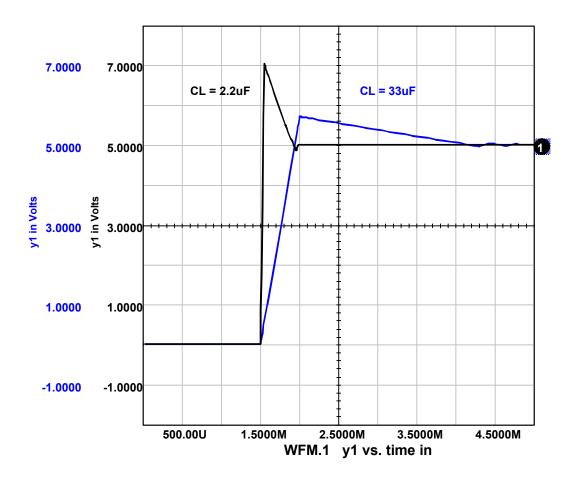
Dropout characteristics

SPICE Waveforms of dropout characteristics

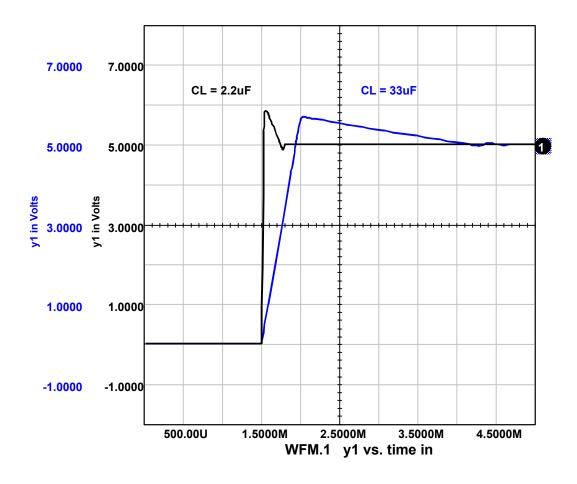

Quiescent current

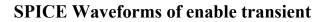
SPICE Waveform of quiescent current

IL = 100uA


Ground pin current

SPICE Waveform of ground pin current


IL = 250mA (R6 and R7 deleted from test circuit)


Enable transient

SPICE Waveforms of enable transient

IL = 10mA, V IN = 14V

IL = 10mA

5.4.6 Conclusions and Recommendations

The Spice simulation results are summarized below in table 1 and are within the manufacturer's electrical specifications. Frequency response agrees with data supplied by the customer except as noted above.

Table 5.4.1 LP2953A SPICE Model - Summary of Simulation Results

Parameter		Тур Ѕрес	SPICE UNITS
REGULATOR			
Output voltage, customer's test circuit		2.758	2.756 V
mfr's test conditions		5.00	5.01 V
Output voltage load regulation, IL = 1 to 250mA		0.04	0.042 %
IL =	0.1 to 1mA	0.04	0.002 %
Output voltage line regulation, V in = 6 to 30V		0.03	0.03 %
Phase Margin, customer's test circuit, IL = 80mA		78.56	78.55 degrees
	at	27.9	25.7 kHz
	IL = 50mA	75.26	76.32 degrees
	at	22.7	22.5 kHz
	IL = 1mA	42.26	48.64 Degrees
	at	3.8	4.5 kHz
Dropout Voltage, IL = 1mA		60	90 mV
IL = 50mA		240	236 mV
IL = 100mA		310	298 mV
IL = 250mA		470	465 mV
Current limit, R out = 1 mOhm		380	384 mA
Reference voltage		1.23	1.23 V
Reference voltage line regulation, V in = 6 to 30V		0.03	0.03 %
V	in = 2.5 to 6V	0.03	0.0044 %
Reference voltage load regulation, IL = 0 to 200uA		0.25	0.25 %
Feedback pin bias current		20	20 nA
Output off pulldown current		50	49.9 mA
DROPOUT DETECTION COMPAR	ATOR		
Output "HIGH" leakage		0.01	0.01 uA
Output "LOW voltage		150	149 mV
Upper threshold voltage		60	60 mV
Lower threshold voltage		85	60 mV

Table 5.4.1 Summary of Simulation Results (cont.)

Parameter	Typ Spec	SPICE UNITS
SHUTDOWN INPUT		
Input offset voltage	3	3 mV
Input bias current	10	10 nA
AUXILIARY COMPARATOR		
Input offset voltage	3	3 mV
Input bias current	10	10 nA
Output "HIGH" leakage	0.01	0.01 uA
Output "LOW voltage	150	149 mV